

GREEN PARKING SOLUTIONS

Becca Hovey Katie Jones Chris Talley

Green Parking Solutions

- Background/Context
- Issue
- Solution
- Pros and Cons of the Solution
- Budget/cost
- Discussion

Background

- Pollution
- Maintenance Costs; Parking Lots and Stormwater System
- Unpleasant, Muddy

Issues: Water Quality

Issues; Stormwater System Maintenance

 Maintenance of the existing remediation systems is expensive and time/ resource consuming.

 Requires the supervision of multiple departments

www.swmaintainence.com

Issue; Surface Condition and Maintenance Cost

- Unpleasant experience for pedestrians and motorists
- Expensive and costly to maintain.
- Band aid for the problems, any repair is temporary and causes other problems.

P. Fosmire & R. Malmo

Importance of Sustainability

Why is it important to WWU?

http://www.dot.gov/mission/sustainability/our-sustainability-efforts-0

ttp://www.wwu.edu/sustain/

Solution

Use pervious concrete to resurface the gravel parking lots on Westerns campus. Pervious concrete is a highly effective and a sustainable material that has equal or superior performance compared to traditional materials.

http://www.forbes.com/sites/mikemyatt/2012/05/31/the-simple-solution-for-improved performance/

Objectives

Identify the benefits of using pervious concrete over impervious materials.

Physical:

- Improve water quality by eliminating pollutants from entering the ecosystem,
- Provide a an easy to maintain surface

Economic:

 Potential Cost Benefits of using pervious concrete; Installation and Maintenance

Cultural:

- This project can serve as a model for implementing the technology in different locations that share similar characteristics.
- This project has the potential to demonstrate WWU's commitment to sustainability

What is pervious pavement and how does it work

Cross Section of Typical Permeable Pavement

•Pervious Concrete 4 -8 inches thick depending on application.

•Open Graded Bedding Layer

•Open Graded Reservoir

Drainage requirements as specified by engineer

•A optional geotextile if desired.

•Base un compacted soil.

Water Quality

Pervious concrete has the capacity to reduce the amount of pollutants in runoff through several methods.

•Velocity reduction increases sedimentation. (Ruston, 2001)

 • Beneficial Bacteria in soils and on aggregates filter petroleum, metals and nutrients.(Pratt et al., 1999)

Infiltration and Storage

Superior infiltration and storage capabilities over impervious materials

Infiltration Video

http://www.smgov.net/uploadedImages/Departments/Public_Works/Civil_Engineer. ing/Street_Maintenance/pervious-water-pic.JPG

Other Environmental Benefits

- Reduced Heat Island effect
- Increased Traction
- Less energy requirement for night time lighting
- Less pooling of water

Other Potential Benefits of Using Pervious Pavement

- Reduced Stormwater Fees City of Bellingham
- Use of porous concrete or porous asphalt will help to meet criteria that could qualify a project for a 50% reduction in the stormwater development charges.

Potential LEED Credits with Permeable Pavement

- Credit 5.1 Reduced Site Disturbance, Protect or Restore Open Space
- Credit 5.2 Reduced Site Disturbance, Development Footprint
- Credit 6.1 Stormwater Management, Rate or Quantity
- Credit 6.2 Stormwater Management, Treatment
- Credit 7.1 Landscape and Exterior Design to Reduce Heat Island, Non-Roof
- Credit 7.2 Landscape and Exterior Design to Reduce Heat Island, Roof
- Credit 3.1-2 Resource Reuse, 5% 10%
- Credit 4.1-2 Recycled Content, 25% 50%
- Credit 1.1 Innovation in Design

Leadership in Energy and Environmental Design

Durability/ Maintenance

- Long Term Durability at URI noted as ordinary after 5 years
- Infiltration Rates maintained

 Regular vacuum sweeping required

www.vactruck.com

Budget and Cost Considerations

- Availability of Specialized Contractors
 - Meet NRMCA requirements
- Site Conditions
 - Accessibility by construction equipment, slope, and existing buildings and uses
- Subgrade
 - Subgrade soils such as clay may result in additional base material needed
- Stormwater Management Requirements
 - The level of control required for the volume, rate, or quality of stormwater discharges will impact the volume of treatment needed
- Project Size
 - Larger pervious concrete areas tend to have lower per square foot costs due to construction efficiencies

Budget: Construction and Material Cost Estimates

Estimated Installation Cost Impervious Concrete

Location/Contractor	Price (sq. ft)		
Chris Webb P.E.	\$3-4		
Puget Sound Partnership	\$ 6-9		
Blue Chip Construction	\$4.93		
City of Sammamish	\$3.83- 6.29		

Estimated Installation Cost Pervious Concrete May 2013

Location/Contractor	Price (sq. ft)	
Chris Webb P.E.	\$4-5	5
Puget Sound Partnership	\$ 6-9	
Blue Chip Construction Sultan, WA	\$3.19	
City of Sammamish, WA	\$5.05	

Potential Limitations/ Additional Expenses

Requires more materials to be used in storage beds

Potential Benefits

Reduction in stormwater fees, and the amount of land required for remediation measures Potential Limitations/Additional Expenses; Requires additional systems and space to mitigate stormwater runoff

Budget: Completed Project Costs

Completed Projects Construction Cost				
Location	Paved Area (Acres)	Considerations	Total Installation Cost	
Univ∉rsity of Rhode Island Kingston, RI (2007)	7.0	Demolition of existing structures, Installation of security infrastructure	3,033,700	
Quil Ceda Casino Tulalip, WA (2010)	4.6	Expansion of existing lot		

UNIVERSITY OF Rhode Island

- The University of Rhode Island primary motivation for use of pervious materials was to protect water quality.
- The Tulalip tribe has a deep concern for the protection of the environment, but also recognizes the economic benefits of using pervious material.

http://www.washingtonconcrete.org/assets/Quil%20Ceda%20Creek%20Casino.JPC http://www.best-masters.com/logo_ecole/625.jpg

Budget; Estimate for Construction WWU

Estimated Construction Cost: WWU "C" lots					
Location	Paved Area (Acres)	Considerations	Cost (sq. ft.)	Total Installation Cost	
Western Washington University Bellingham, WA	10.55	Unknown sub surface conditions.	\$ 3.83-9.00	\$ 1.75-2.15 Million	

Number of C lot parking spaces:1064 10.55ac

Potential Cost Savings

- Stormwater Management
- Ocatch basins
- Piping
- Detention
- Treatment

<u>ttp://elitefinishes.com/services/catchbasin_repair.html</u>

Implications

- Time/Logistics
- Un foreseen obstacles to construction
- Existing infrastructure
- A combination of BMPs would most likely be the best solution

Discussion

In an effort to promote sustainable, environmentally-sound campus development, pervious concrete should be used for resurfacing the gravel parking lots on Westerns campus.

With this project, the College has the opportunity to reconsider and enhance its academic facilities and campus spaces, particularly with regards to environmental sustainability.

Acknowledgements

- Seth Vidaña Manager Office of Sustainability
- Ohris Webb Professional Engineer
- David Sherwood WWU Stormwater Manger
- Julia Gassman Parking Services Manager
- Roger Thacker Parking Services Maintenance

References

- Bean, E.Z., W.F. Hunt, D.A. Bidelspach, A Field Survey of Permeable Pavement Surface Infiltration Rates, ASCE Journal of Irrigation and Drainage Engineering, Vol. 133, No. 3, pp. 249-255, 2007a.
- City of Bellingham. Advanced Methods and Materials AMM300 BENEFITS Porous Concrete/Asphalt. 2012.
- Collins, Kelly A., J.M. Hathaway, and W.F. Hunt, 2008. Hydrologic Comparison of Four Types of Permeable Pavement and Standard Asphalt in Eastern North Carolina. *Journal of Hydrologic Engineering*. Nov/Dec 2008, 13 (12): 1146-1157
- Pratt, C.J., A.P. Newman, and P.C. Bond, Mineral Oil Bio-Degradation Within a Permeable Pavement: Long Term Observations. *Water Science and Technology* 39.2:103-109, 1999.
- Rushton, B. T., Low Impact Parking Lot Design Reduces Runoff and Pollutant Loads, *Journal of Water Resources Planning and Management*, May/June 2001, 172-179, 2001.
- The University of Rhode Island's Permeable Parking Lots: A Case Study of Alternative Pavement Materials. The University of Rhode Island Cooperative Extension in partnership with the Rhode Island Department of Health Source Water Protection Program. 2009
- U.S. EPA New England Best Management Practices for Colleges and Universities. Water Management Parking Lot Storm Water Control Program. 2007
- Washington Aggregates & Concrete Association, Pervious Concrete Project Profile, June 2006, available at: <u>http://www.washingtonconcrete.org/assets/ProfileStratfordPlace.pdf</u>, (accessed April 2013)
- Webb, Chris Professional Engineer Bellingham, WA